1. binomial coefficients
2. Binomial Theorem i Pascal's Triangle
3. $\binom{n}{r}$ or ${ }_{n} C_{r}$
4. expanding; binomial
5. $(a+6)^{4}={ }_{4} C_{0} a^{4}+{ }_{4} C_{1} a^{3}(6)+{ }_{4} C_{2} a^{2}(6)^{2}+{ }_{4} C_{3} a(6)^{3}+{ }_{4} C_{4}(6)^{4}$

$$
\begin{aligned}
& =1 a^{4}+4 a^{3}(6)+6 a^{2}(6)^{2}+4 a(6)^{3}+1(6)^{4} \\
& =a^{4}+24 a^{3}+216 a^{2}+864 a+1296
\end{aligned}
$$

24. $(y-2)^{5}={ }_{5} C_{0} y^{5}-{ }_{5} C_{1} y^{4}(2)+{ }_{5} C_{2} y^{3}(2)^{2}-{ }_{5} C_{3} y^{2}(2)^{3}+{ }_{5} C_{4} y(2)^{4}-{ }_{5} C_{5}(2)^{5}$

$$
=y^{5}-10 y^{4}+40 y^{3}-80 y^{2}+80 y-32
$$

27. $(2 x+y)^{3}={ }_{3} C_{0}(2 x)^{3}+{ }_{3} C_{1}(2 x)^{2}(y)+{ }_{3} C_{2}(2 x)\left(y^{2}\right)+{ }_{3} C_{3}\left(y^{3}\right)$

$$
\begin{aligned}
& =(1)\left(8 x^{3}\right)+(3)\left(4 x^{2}\right)(y)+(3)(2 x)\left(y^{2}\right)+(1)\left(y^{3}\right) \\
& =8 x^{3}+12 x^{2} y+6 x y^{2}+y^{3}
\end{aligned}
$$

30. $(x+2 y)^{4}={ }_{4} C_{0} x^{4}+{ }_{4} C_{1} x^{3}(2 y)+{ }_{4} C_{2} x^{2}(2 y)^{2}+{ }_{4} C_{3} x(2 y)^{3}+{ }_{4} C_{4}(2 y)^{4}$

$$
\begin{aligned}
& =x^{4}+4 x^{3}(2 y)+6 x^{2}\left(4 y^{2}\right)+4 x\left(8 y^{3}\right)+16 y^{4} \\
& =x^{4}+8 x^{3} y+24 x^{2} y^{2}+32 x y^{3}+16 y^{4}
\end{aligned}
$$

33. $\left(x^{2}+y^{2}\right)^{4}={ }_{4} C_{0}\left(x^{2}\right)^{4}+{ }_{4} C_{1}\left(x^{2}\right)^{3}\left(y^{2}\right)+{ }_{4} C_{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}+{ }_{4} C_{3}\left(x^{2}\right)\left(y^{2}\right)^{3}+{ }_{4} C_{4}\left(y^{2}\right)^{4}$

$$
\begin{aligned}
& =(1)\left(x^{8}\right)+(4)\left(x^{6} y^{2}\right)+(6)\left(x^{4} y^{4}\right)+(4)\left(x^{2} y^{6}\right)+(1)\left(y^{8}\right) \\
& =x^{8}+4 x^{6} y^{2}+6 x^{4} y^{4}+4 x^{2} y^{6}+y^{8}
\end{aligned}
$$

36. $\left(\frac{1}{x}+2 y\right)^{6}={ }_{6} C_{0}\left(\frac{1}{x}\right)^{6}+{ }_{6} C_{1}\left(\frac{1}{x}\right)^{5}(2 y)+{ }_{6} C_{2}\left(\frac{1}{x}\right)^{4}(2 y)^{2}+{ }_{6} C_{3}\left(\frac{1}{x}\right)^{3}(2 y)^{3}+{ }_{6} C_{4}\left(\frac{1}{x}\right)^{2}(2 y)^{4}+{ }_{6} C_{5}\left(\frac{1}{x}\right)(2 y)^{5}+{ }_{6} C_{6}(2 y)^{6}$

$$
\begin{aligned}
& =1\left(\frac{1}{x}\right)^{6}+6(2)\left(\frac{1}{x}\right)^{5} y+15(4)\left(\frac{1}{x}\right)^{4} y^{2}+20(8)\left(\frac{1}{x}\right)^{3} y^{3}+15(16)\left(\frac{1}{x}\right)^{2} y^{4}+6(32)\left(\frac{1}{x}\right) y^{5}+1(64) y^{6} \\
& =\frac{1}{x^{6}}+\frac{12 y}{x^{5}}+\frac{60 y^{2}}{x^{4}}+\frac{160 y^{3}}{x^{3}}+\frac{240 y^{4}}{x^{2}}+\frac{192 y^{5}}{x}+64 y^{6}
\end{aligned}
$$

39. $2(x-3)^{4}+5(x-3)^{2}=2\left[x^{4}-4\left(x^{3}\right)(3)+6\left(x^{2}\right)\left(3^{2}\right)-4(x)\left(3^{3}\right)+3^{4}\right]+5\left[x^{2}-2(x)(3)+3^{2}\right]$

$$
\begin{aligned}
& =2\left(x^{4}-12 x^{3}+54 x^{2}-108 x+81\right)+5\left(x^{2}-6 x+9\right) \\
& =2 x^{4}-24 x^{3}+113 x^{2}-246 x+207
\end{aligned}
$$

42. 4th Row of Pascal's Triangle: $1 \begin{array}{lllll}4 & 6 & 4 & 1\end{array}$

$$
\begin{aligned}
(3-2 z)^{4} & =3^{4}-4(3)^{3}(2 z)+6(3)^{2}(2 z)^{2}-4(3)(2 z)^{3}+(2 z)^{4} \\
& =81-216 z+216 z^{2}-96 z^{3}+16 z^{4}
\end{aligned}
$$

45. The 4 th term in the expansion of $(x+y)^{10}$ is ${ }_{10} C_{3} x^{10-3} y^{3}=120 x^{7} y^{3}$.
46. The 4 th term in the expansion of $(x-10 z)^{7}$ is

$$
{ }_{7} C_{3} x^{7-3}(-10 z)^{3}=35 \cdot x^{4}\left(-1000 z^{3}\right)=-35,000 x^{4} z^{3}
$$

51. The 10 th term in the expansion of $(10 x-3 y)^{12}$ is

$$
\begin{aligned}
{ }_{12} C_{9}(10 x)^{12-9}(-3 y)^{9} & =220\left(1000 x^{3}\right)\left(-19,683 y^{9}\right) \\
& =-4,330,260,000 x^{3} y^{9}
\end{aligned}
$$

54. The term involving x^{8} in the expansion of $\left(x^{2}+3\right)^{12}$ is

$$
{ }_{12} C_{8}\left(x^{2}\right)^{4}(3)^{8}=\frac{12!}{(12-8)!8!} \cdot 3^{8} x^{8}=3,247,695 x^{8}
$$

The coefficient is $3,247.695$.
57. The term involving $x^{4} y^{5}$ in the expansion of $(2 x-5 x)^{9}$

$$
\text { is } \begin{aligned}
{ }_{9} C_{5}(2 x)^{4}(-5 y)^{5} & =126\left(16 x^{4}\right)\left(-3125 y^{5}\right) \\
& =-6,300,000 x^{4} y^{5} .
\end{aligned}
$$

The coefficient is $-6,300,000$.
67. $\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}-x^{3}}{h}$

$$
\begin{aligned}
& =\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h} \\
& =\frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h} \\
& =3 x^{2}+3 x h+h^{2}, h \neq 0
\end{aligned}
$$

69. $\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{6}-x^{6}}{h}$

$$
\begin{aligned}
& =\frac{x^{6}+6 x^{5} h+15 x^{4} h^{2}+20 x^{3} h^{3}+15 x^{2} h^{4}+6 x h^{5}+h^{6}-x^{6}}{h} \\
& =\frac{h\left(6 x^{5}+15 x^{4} h+20 x^{3} h^{2}+15 x^{2} h^{3}+6 x h^{4}+h^{5}\right)}{h} \\
& =6 x^{5}+15 x^{4} h+20 x^{3} h^{2}+15 x^{2} h^{3}+6 x h^{4}+h^{5} . h \neq 0
\end{aligned}
$$

85. ${ }_{7} C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{3}=\frac{7!}{3!4!}\left(\frac{1}{16}\right)\left(\frac{1}{8}\right)=35\left(\frac{1}{16}\right)\left(\frac{1}{8}\right) \approx 0.273$
86. ${ }_{10} C_{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{7}=\frac{10!}{7!3!}\left(\frac{1}{64}\right)\left(\frac{2187}{16,384}\right)=120\left(\frac{1}{64}\right)\left(\frac{2187}{16,384}\right) \approx 0.250$
87. ${ }_{8} C_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{4}=\frac{8!}{4!4!}\left(\frac{1}{81}\right)\left(\frac{16}{81}\right)=70\left(\frac{1}{81}\right)\left(\frac{16}{81}\right) \approx 0.171$
88. ${ }_{8} C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{4}=\frac{8!}{4!4!}\left(\frac{1}{16}\right)\left(\frac{1}{16}\right)=70\left(\frac{1}{16}\right)\left(\frac{1}{16}\right) \approx 0.273$
