6. $7,21,63,189, \ldots$

Geometric sequence, $r=3$
9. $1,-\frac{1}{2}, \frac{1}{4},-\frac{1}{8}, \ldots$

Geometric sequence, $r=-\frac{1}{2}$
12. $9,-6,4,-\frac{8}{3}, \ldots$

Geometric sequence, $r=-\frac{2}{3}$
15. $1,-\sqrt{7}, 7,-7 \sqrt{7}, \ldots$

Geometric sequence, $r=-\sqrt{7}$
18. $a_{1}=8, r=2$
$a_{1}=8$
$a_{2}=8(2)=16$
$a_{3}=16(2)=32$
$a_{4}=32(2)=64$
$a_{5}=64(2)=128$
21. $a_{1}=5, r=-\frac{1}{10}$
$a_{1}=5$
$a_{2}=5\left(-\frac{1}{10}\right)=-\frac{1}{2}$
$a_{3}=\left(-\frac{1}{2}\right)\left(-\frac{1}{10}\right)=\frac{1}{20}$
$a_{4}=\frac{1}{20}\left(-\frac{1}{10}\right)=-\frac{1}{200}$
$a_{5}=\left(-\frac{1}{200}\right)\left(-\frac{1}{10}\right)=\frac{1}{2000}$
24. $a_{1}=2, r=\pi$
$a_{1}=2$
$a_{2}=2(\pi)=2 \pi$
$a_{3}=2 \pi(\pi)=2 \pi^{2}$
$a_{4}=2 \pi^{2}(\pi)=2 \pi^{3}$
$a_{5}=2 \pi^{3}(\pi)=2 \pi^{4}$
27. $a_{1}=2, r=\frac{x}{4}$
$a_{1}=2$
$a_{2}=2\left(\frac{x}{4}\right)=\frac{x}{2}$
$a_{3}=\left(\frac{x}{2}\right)\left(\frac{x}{4}\right)=\frac{x^{2}}{8}$
$a_{4}=\left(\frac{x^{2}}{8}\right)\left(\frac{x}{4}\right)=\frac{x^{3}}{32}$
$a_{5}=\left(\frac{x^{3}}{32}\right)\left(\frac{x}{4}\right)=\frac{x^{4}}{128}$
30. $a_{1}=81, a_{k+1}=\frac{1}{3} a_{k}$
$a_{1}=81$
$a_{2}=\frac{1}{3}(81)=27$
$a_{3}=\frac{1}{3}(27)=9$
$a_{4}=\frac{1}{3}(9)=3$
$a_{5}=\frac{1}{3}(3)=1$
$r=\frac{1}{3}$
$a_{n}=81\left(\frac{1}{3}\right)^{n-1}=243\left(\frac{1}{3}\right)^{n}$
33. $a_{1}=6, a_{k+1}=-\frac{3}{2} a_{k}$
$a_{1}=6$
$a_{2}=-\frac{3}{2}(6)=-9$
$a_{3}=-\frac{3}{2}(-9)=\frac{27}{2}$
$a_{4}=-\frac{3}{2}\left(\frac{27}{2}\right)=-\frac{81}{4}$
$a_{5}=-\frac{3}{2}\left(-\frac{81}{4}\right)=\frac{243}{8}$
$r=-\frac{3}{2}$
$a_{n}=6\left(-\frac{3}{2}\right)^{n-1}$ or $a_{n}=-4\left(-\frac{3}{2}\right)^{n}$
36. $a_{1}=5, r=\frac{7}{2}, n=8$
$a_{n}=5\left(\frac{7}{2}\right)^{n-1}$
$a_{8}=5\left(\frac{7}{2}\right)^{8-1}=\frac{4,117,715}{128}$
39. $a_{1}=100, r=e^{x}, n=9$
$a_{n}=a_{1} r^{n-1}=100\left(e^{x}\right)^{n-1}$
$a_{9}=100\left(e^{x}\right)^{8}=100 e^{8 x}$
42. $a_{1}=1, r=\sqrt{3}, n=8$
$a_{n}=a_{1} r^{n-1}=(\sqrt{3})^{n-1}$
$a_{8}=(\sqrt{3})^{7}=27 \sqrt{3}$
45. $11,33,99, \ldots \Rightarrow r=3$
$a_{n}=11(3)^{n-1}$
$a_{9}=11(3)^{9-1}=72,171$
48. $a_{1}=4, a_{2}=8, a_{3}=16$
$r=\frac{a_{2}}{a_{1}}=\frac{8}{4}=2$
$a_{n}=a_{1} r^{n-1}$
$a_{22}=(4)(2)^{21}=8,388,608$
51. $a_{1}=16, a_{4}=\frac{27}{4}$
$a_{4}=a_{1} r^{3}$
$\frac{27}{4}=16 r^{3}$
$\frac{27}{64}=r^{3}$
$\frac{3}{4}=r$
$a_{n}=16\left(\frac{3}{4}\right)^{n-1}$
$a_{3}=16\left(\frac{3}{4}\right)^{2}=9$
54. $a_{3}=\frac{16}{3}, a_{5}=\frac{64}{27}$
$a_{5}=a_{3} r^{(5-3)}$
$a_{5}=a_{3} r^{2}$
$\frac{64}{27}=\frac{16}{3} r^{2}$
$r^{2}=\frac{4}{9}$
$r=\frac{2}{3}$
$a_{7}=a_{5} r^{(7-5)}$
$a_{7}=a_{5} r^{2}$
$a_{7}=\left(\frac{64}{27}\right)\left(\frac{2}{3}\right)^{2}=\frac{256}{243}$
57. $a_{n}=18\left(\frac{2}{3}\right)^{n-1}$
$a_{1}=18$ and $r=\frac{2}{3}$
Because $0<r<1$, the sequence is decreasing.
Matches (a).
69. $\sum_{n=1}^{6}(-7)^{n-1}=1+(-7)+(-7)^{2}+\cdots+(-7)^{5} \Rightarrow a_{1}=1, r=-7$
$S_{6}=\frac{1\left(1-(-7)^{6}\right)}{1-(-7)}=-14,706$
72. $\sum_{i=1}^{10} 2\left(\frac{1}{4}\right)^{i-1}=2+2\left(\frac{1}{4}\right)^{1}+2\left(\frac{1}{4}\right)^{2}+\cdots+2\left(\frac{1}{4}\right)^{9} \Rightarrow a_{1}=2, r=\frac{1}{4}$

$$
S_{10}=2\left[\frac{1-\left(\frac{1}{4}\right)^{10}}{1-\left(\frac{1}{4}\right)}\right]=\frac{8}{3}\left[1-\left(\frac{1}{4}\right)^{10}\right] \approx 2.667
$$

75. $\sum_{n=0}^{20} 3\left(\frac{3}{2}\right)^{n}=\sum_{n=1}^{21} 3\left(\frac{3}{2}\right)^{n-1}=3+3\left(\frac{3}{2}\right)^{1}+3\left(\frac{3}{2}\right)^{2}+\cdots+3\left(\frac{3}{2}\right)^{20} \Rightarrow a_{1}=3, r=\frac{3}{2}$

$$
S_{21}=3\left[\frac{1-\left(\frac{3}{2}\right)^{21}}{1-\frac{3}{2}}\right]=-6\left[1-\left(\frac{3}{2}\right)^{21}\right] \approx 29,921.311
$$

78. $\sum_{n=0}^{20} 10\left(\frac{1}{5}\right)^{n}=10+\sum_{n=1}^{20} 10\left(\frac{1}{5}\right)^{n}=10+\left[10\left(\frac{1}{5}\right)^{1}+10\left(\frac{1}{5}\right)^{2}+10\left(\frac{1}{5}\right)^{3}+\cdots+10\left(\frac{1}{5}\right)^{20}\right] \Rightarrow a_{1}=2, r=\frac{1}{5}$

$$
S_{21}=10+2\left[\frac{1-\left(\frac{1}{5}\right)^{20}}{1-\left(\frac{1}{5}\right)}\right]=10+\frac{5}{2}\left[1-\left(\frac{1}{5}\right)^{20}\right] \approx 12.500
$$

81. $\sum_{n=0}^{40} 2\left(-\frac{1}{4}\right)^{n}=2+2\left(-\frac{1}{4}\right)+2\left(-\frac{1}{4}\right)^{2}+\cdots+2\left(-\frac{1}{4}\right)^{40} \Rightarrow a_{1}=2, r=-\frac{1}{4}, n=41$

$$
S_{41}=2\left[\frac{1-\left(-\frac{1}{4}\right)^{41}}{1-\left(-\frac{1}{4}\right)}\right]=\frac{8}{5}\left[1-\left(-\frac{1}{4}\right)^{41}\right] \approx 1.6=\frac{8}{5}
$$

84. $\sum_{i=0}^{25} 8\left(-\frac{1}{2}\right)^{i}=8+\sum_{i=1}^{25} 8\left(-\frac{1}{2}\right)^{i}=8+\left[-4+8\left(-\frac{1}{2}\right)^{2}+8\left(-\frac{1}{2}\right)^{3}+\cdots+8\left(-\frac{1}{2}\right)^{25}\right] \Rightarrow a_{1}=-4, r=-\frac{1}{2}$

$$
S_{26}=8-4\left[\frac{1-\left(-\frac{1}{2}\right)^{25}}{1-\left(-\frac{1}{2}\right)}\right]=8-\frac{8}{3}\left[1-\left(-\frac{1}{2}\right)^{25}\right] \approx 5.333
$$

87. $10+30+90+\cdots+7290$
$r=3$ and $7290=10(3)^{n-1}$

$$
\begin{aligned}
729 & =3^{n-1} \\
6 & =n-1 \Rightarrow n=7
\end{aligned}
$$

So, the sum can be written as $\sum_{n=1}^{7} 10(3)^{n-1}$.
90. $15-3+\frac{3}{5}-\cdots-\frac{3}{625}$

$$
\begin{aligned}
a_{1}=15, r & =-\frac{1}{5} \\
15\left(-\frac{1}{5}\right)^{n-1} & =-\frac{3}{625} \\
\left(-\frac{1}{5}\right)^{n-1} & =-\frac{1}{3125}
\end{aligned}
$$

$$
\left(-\frac{1}{5}\right)^{n}=\frac{1}{15,625}
$$

By trial and error, we find that $n=6$.
So, the sum can be written as $\sum_{n=1}^{6} 15\left(-\frac{1}{5}\right)^{n-1}$.
93. $\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=1+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\cdots$

$$
\begin{aligned}
& a_{1}=1, r=\frac{1}{2} \\
& \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=\frac{a_{1}}{1-r}=\frac{1}{1-\left(\frac{1}{2}\right)}=2
\end{aligned}
$$

96. $\sum_{n=0}^{\infty} 2\left(-\frac{2}{3}\right)^{n}=2+2\left(-\frac{2}{3}\right)^{1}+2\left(-\frac{2}{3}\right)^{2}+\cdots$

$$
a_{1}=2, r=-\frac{2}{3}
$$

$$
\sum_{n=0}^{\infty} 2\left(-\frac{2}{3}\right)^{n}=\frac{a_{1}}{1-r}=\frac{2}{1-\left(-\frac{2}{3}\right)}=\frac{6}{5}
$$

99. $\sum_{n=0}^{\infty}(0.4)^{n}=1+(0.4)^{1}+(0.4)^{2}+\cdots$

$$
\begin{aligned}
& a_{1}=1, r=0.4 \\
& \sum_{n=0}^{\infty}(0.4)^{n}=\frac{1}{1-0.4}=\frac{5}{3}
\end{aligned}
$$

102. $\sum_{n=0}^{\infty}\left[-10(0.2)^{n}\right]=-10-10(0.2)^{1}-10(0.2)^{2}-\cdots$

$$
\begin{aligned}
& a_{1}=-10, r=0.2 \\
& \sum_{n=0}^{\infty}-10(0.2)^{n}=\frac{-10}{1-0.2}=-12.5
\end{aligned}
$$

105. $\frac{1}{9}-\frac{1}{3}+1-3+\cdots=\sum_{n=0}^{\infty} \frac{1}{9}(-3)^{n}$

The sum is undefined because

$$
|r|=|-3|=3>1
$$

117. $A=\sum_{n=1}^{60} 100\left(1+\frac{0.06}{12}\right)^{n}=\sum_{n=1}^{60} 100(1.005)^{n}=100(1.005) \cdot \frac{\left[1-1.005^{60}\right]}{[1-1.005]} \approx \$ 7011.89$
118. $a_{n}=45,000(1.05)^{n-1}$

Total compensation $=T=\sum_{n=1}^{40} 45,000(1.05)^{n-1}=45,000 \frac{\left(1-1.05^{40}\right)}{(1-1.05)} \approx \$ 5,435,989.84$

