Section 9.1

1. infinite sequence
2. terms
3. finite
4. recursively
5. factorial
6. summation notation
7. index; upper; lower
8. series
9. $a_{n}=2 n+5$
$a_{1}=2(1)+5=7$
$a_{2}=2(2)+5=9$
$a_{3}=2(3)+5=11$
$a_{4}=2(4)+5=13$
$a_{5}=2(5)+5=15$
10. $a_{n}=4 n-7$
$a_{1}=4(1)-7=-3$
$a_{2}=4(2)-7=1$
$a_{3}=4(3)-7=5$
$a_{4}=4(4)-7=9$
$a_{5}=4(5)-7=13$
11. $a_{n}=2^{n}$
$a_{1}=2^{1}=2$
$a_{2}=2^{2}=4$
$a_{3}=2^{3}=8$
$a_{4}=2^{4}=16$
$a_{5}=2^{5}=32$
12. $a_{n}=\frac{1}{n^{3 / 2}}$
$a_{1}=\frac{1}{1}=1$
$a_{2}=\frac{1}{2^{3 / 2}}$
$a_{3}=\frac{1}{3^{3 / 2}}$
$a_{4}=\frac{1}{4^{3 / 2}}=\frac{1}{8}$
$a_{5}=\frac{1}{5^{3 / 2}}$
13. $a_{n}=\frac{(-1)^{n}}{n^{2}}$
$a_{1}=-\frac{1}{1}=-1$
$a_{2}=\frac{1}{4}$
$a_{3}=-\frac{1}{9}$
$a_{4}=\frac{1}{16}$
$a_{5}=-\frac{1}{25}$
14. $a_{n}=\frac{2}{3}$
$a_{1}=\frac{2}{3}$
$a_{2}=\frac{2}{3}$
$a_{3}=\frac{2}{3}$
$a_{4}=\frac{2}{3}$
$a_{5}=\frac{2}{3}$
15. $a_{n}=n(n-1)(n-2)$
$a_{1}=(1)(0)(-1)=0$
$a_{2}=(2)(1)(0)=0$
$a_{3}=(3)(2)(1)=6$
$a_{4}=(4)(3)(2)=24$
$a_{5}=(5)(4)(3)=60$
16. $a_{n}=\frac{(-1)^{n+1}}{n^{2}+1}$
$a_{1}=\frac{(-1)^{1+1}}{1^{2}+1}=\frac{(-1)^{2}}{2}=\frac{1}{2}$
$a_{2}=\frac{(-1)^{2+1}}{2^{2}+1}=\frac{(-1)^{3}}{5}=-\frac{1}{5}$
$a_{3}=\frac{(-1)^{3+1}}{3^{2}+1}=\frac{(-1)^{4}}{10}=\frac{1}{10}$
$a_{4}=\frac{(-1)^{4+1}}{4^{2}+1}=\frac{(-1)^{5}}{17}=-\frac{1}{17}$
$a_{5}=\frac{(-1)^{5+1}}{5^{2}+1}=\frac{(-1)^{6}}{26}=\frac{1}{26}$
17. $a_{25}=(-1)^{25}(3(25)-2)=-73$
18. $a_{11}=\frac{4(11)}{2(11)^{2}-3}=\frac{44}{239}$
19. $a_{n}=\frac{8}{n+1}$
$a_{1}=4, a_{10}=\frac{8}{11}$
The sequence decreases.
Matches graph (c).
20. $a_{n}=\frac{8 n}{n+1}$
$a_{1}=4, a_{3}=\frac{24}{4}=6$
The sequence increases.
Matches graph (b).
21. $a_{n}=4(0.5)^{n-1}$
$a_{1}=4, a_{10}=\frac{1}{128}$
The sequence decreases.
Matches graph (d).
22. $a_{n}=\frac{4^{n}}{n!}$
$a_{1}=4, a_{4}=\frac{4^{4}}{4!}=\frac{256}{24}=10 \frac{2}{3}$
The sequence increases.
Matches graph (a).
23. $-\frac{2}{3}, \frac{3}{4},-\frac{4}{5}, \frac{5}{6},-\frac{6}{7}, \ldots$
$a_{n}=(-1)^{n}\left(\frac{n+1}{n+2}\right)$
24. $\frac{2}{1}, \frac{3}{3}, \frac{4}{5}, \frac{5}{7}, \frac{6}{9}, \ldots$
$a_{n}=\frac{n+1}{2 n-1}$
25. $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \ldots$
$a_{n}=\frac{1}{n^{2}}$
26. $1,-1,1,-1,1, \ldots$

$n:$	1	2	3	4	5	\ldots	n
Terms:	1	-1	1	-1	1	\ldots	a_{n}

Apparent pattern:
Each term is either 1 or -1 which implies that $a_{n}=(-1)^{n+1}$.
63. $a_{1}=28$ and $a_{k+1}=a_{k}-4$
$a_{1}=28$
$a_{2}=a_{1}-4=28-4=24$
$a_{3}=a_{2}-4=24-4=20$
$a_{4}=a_{3}-4=20-4=16$
$a_{5}=a_{4}-4=16-4=12$
65. $a_{1}=3$, and $a_{k+1}=2\left(a_{k}-1\right)$
$a_{1}=3$
$a_{2}=2\left(a_{1}-1\right)=2(3-1)=4$
$a_{3}=2\left(a_{2}-1\right)=2(4-1)=6$
$a_{4}=2\left(a_{3}-1\right)=2(6-1)=10$
$a_{5}=2\left(a_{4}-1\right)=2(10-1)=18$
67. $a_{1}=6$ and $a_{k+1}=a_{k}+2$
$a_{1}=6$
$a_{2}=a_{1}+2=6+2=8$
$a_{3}=a_{2}+2=8+2=10$
$a_{4}=a_{3}+2=10+2=12$
$a_{5}=a_{4}+2=12+2=14$
In general, $a_{n}=2 n+4$.
69. $a_{1}=81$ and $a_{k+1}=\frac{1}{3} a_{k}$
$a_{1}=81$
$a_{2}=\frac{1}{3} a_{1}=\frac{1}{3}(81)=27$
$a_{3}=\frac{1}{3} a_{2}=\frac{1}{3}(27)=9$
$a_{4}=\frac{1}{3} a_{3}=\frac{1}{3}(9)=3$
$a_{5}=\frac{1}{3} a_{4}=\frac{1}{3}(3)=1$
In general,
$a_{n}=81\left(\frac{1}{3}\right)^{n-1}=81(3)\left(\frac{1}{3}\right)^{n}=\frac{243}{3^{n}}$.
71. $a_{n}=\frac{1}{n!}$

$$
\begin{aligned}
& a_{0}=\frac{1}{0!}=\frac{1}{1}=1 \\
& a_{1}=\frac{1}{1!}=\frac{1}{1}=1 \\
& a_{2}=\frac{1}{2!}=\frac{1}{2 \cdot 1}=\frac{1}{2} \\
& a_{3}=\frac{1}{3!}=\frac{1}{3 \cdot 2 \cdot 1}=\frac{1}{6} \\
& a_{4}=\frac{1}{4!}=\frac{1}{4 \cdot 3 \cdot 2 \cdot 1}=\frac{1}{24}
\end{aligned}
$$

73. $a_{n}=\frac{1}{(n+1)!}$

$$
a_{0}=\frac{1}{1!}=1
$$

$$
a_{1}=\frac{1}{2!}=\frac{1}{2}
$$

$$
a_{2}=\frac{1}{3!}=\frac{1}{6}
$$

$$
a_{3}=\frac{1}{4!}=\frac{1}{24}
$$

$$
a_{4}=\frac{1}{5!}=\frac{1}{120}
$$

77. $\frac{4!}{6!}=\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}=\frac{1}{5 \cdot 6}=\frac{1}{30}$
78. $\frac{12!}{4!\cdot 8!}=\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12} \frac{9 \cdot 10 \cdot 11 \cdot 12}{1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 4}=495$
79. $\sum_{i=1}^{5}(2 i+1)=(2+1)+(4+1)+(6+1)+(8+1)+(10+1)=35$
80. $\sum_{k=1}^{4} 10=10+10+10+10=40$
81. $\sum_{i=0}^{4} i^{2}=0^{2}+1^{2}+2^{2}+3^{2}+4^{2}=30$
82. $\sum_{k=0}^{3} \frac{1}{k^{2}+1}=\frac{1}{1}+\frac{1}{1+1}+\frac{1}{4+1}+\frac{1}{9+1}=\frac{9}{5}$
83. $\sum_{k=2}^{5}(k+1)^{2}(k-3)=(3)^{2}(-1)+(4)^{2}(0)+(5)^{2}(1)+(6)^{2}(2)=88$
84. $\sum_{i=1}^{4} 2^{i}=2^{1}+2^{2}+2^{3}+2^{4}=30$
85. $\frac{1}{3(1)}+\frac{1}{3(2)}+\frac{1}{3(3)}+\cdots+\frac{1}{3(9)}=\sum_{i=1}^{9} \frac{1}{3 i}$
86. $\left[2\left(\frac{1}{8}\right)+3\right]+\left[2\left(\frac{2}{8}\right)+3\right]+\left[2\left(\frac{3}{8}\right)+3\right]+\cdots+\left[2\left(\frac{8}{8}\right)+3\right]=\sum_{i=1}^{8}\left[2\left(\frac{i}{8}\right)+3\right]$
87. $3-9+27-81+243-729=\sum_{i=1}^{6}(-1)^{i+1} 3 i$
88. $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots-\frac{1}{20^{2}}=\sum_{i=1}^{20} \frac{(-1)^{i+1}}{i^{2}}$
